资源类型

期刊论文 608

会议视频 10

年份

2023 58

2022 58

2021 49

2020 49

2019 37

2018 28

2017 29

2016 20

2015 18

2014 40

2013 22

2012 18

2011 25

2010 25

2009 20

2008 25

2007 30

2006 15

2005 14

2004 2

展开 ︾

关键词

动力特性 6

动态规划 5

绿色化工 5

膜分离 5

动力响应 3

反渗透 3

渗透汽化 3

力学性能 2

动力学 2

动力气垫 2

动态 2

动态性能 2

动态特性 2

动态管理 2

反渗透膜 2

扬矿管 2

模态 2

海上风电场 2

深海采矿 2

展开 ︾

检索范围:

排序: 展示方式:

Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic

Boksoon KWON, Noeon PARK, Jaeweon CHO,

《环境科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 172-182 doi: 10.1007/s11783-010-0002-y

摘要: The formation of a dynamic membrane (DM) was investigated using polyethylene glycol (PEG) (molecular weight of 35000 g/mol, concentration of 1 g/L). Two natural organic matters (NOM), Dongbok Lake NOM (DLNOM) and Suwannee River NOM (SRNOM) were used in the ultrafiltration experiments along with PEG. To evaluate the effects of the DM with PEG on ultrafiltration, various transport experiments were conducted, and the analyses of the NOM in the membrane feed and permeate were performed using high performance size exclusion chromatography, and the pore size distribution ( PSD) and molecular weight cut off ( MWCO) were determined. The advantages of DM formed with PEG can be summarized as follows: (1) PEG interferes with NOM transmission through the ultrafiltration membrane pores by increasing the retention coefficient of NOM in UF membranes, and (2) low removal of NOM by the DM is affected by external factors, such as pressure increases during UF membrane filtration, which decreases the PSD and MWCO of UF membranes. However, a disadvantage of the DM with PEG was severe flux decline; thus, one must be mindful of both the positive and negative influences of the DM when optimizing the UF performance of the membrane.

关键词: dynamic membrane     natural organic matters     ultrafiltration membrane performance     effective PSD     effective molecular weight cutoff    

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1018-1028 doi: 10.1007/s11705-020-1915-z

摘要: An ion-imprinted sorbent (IIP) was prepared by using Ni as template, 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane as functional monomer, and silica gel as carrier. The adsorption performance of IIP towards Ni was investigated. IIP showed a higher adsorption capacity than that of non-imprinted sorbent, and it also exhibited high selectivity for Ni in the presence of Cu and Zn ions. Then, IIP was used to form a dynamic membrane onto the surface of ceramic membrane for treatment of electroplating wastewater containing Ni . Compared with ceramic membrane, IIP dynamic membrane had much higher steady membrane flux, and also rejected Ni to obtain a lower concentration of Ni in the permeate fluid. Perhaps it is suitable for future practice applications.

关键词: ion-imprinted     nickel ion     dynamic membrane     adsorption    

Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment

Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue

《环境科学与工程前沿(英文)》 2019年 第13卷 第1期 doi: 10.1007/s11783-019-1093-8

摘要:

• We created a combined system for treating oilfield polymer-flooding wastewater.

• The system was composed of coagulation, hydrolysis acidification and DMBR.

• Coagulant integrated with demulsifier dominated the removal of crude oil.

• The DMBR proceed efficiently without serious membrane fouling.

关键词: Coagulation     Hydrolysis acidification     Dynamic membrane bioreactor     Polymer flooding    

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 296-305 doi: 10.1007/s11705-018-1701-3

摘要: Gas membrane separation process is highly unpredictable due to interacting non-ideal factors, such as composition/pressure-dependent permeabilities and real gas behavior. Although molecular dynamic (MD) simulation can mimic those complex effects, it cannot precisely predict bulk properties due to scale limitations of calculation algorithm. This work proposes a method for modeling a membrane separation process for volatile organic compounds by combining the MD simulation with the free volume theory. This method can avoid the scale-up problems of the MD method and accurately simulate the performance of membranes. Small scale MD simulation and pure gas permeation data are employed to correlate pressure-irrelevant parameters for the free volume theory; by this approach, the microscopic effects can be directly linked to bulk properties (non-ideal permeability), instead of being fitted by a statistical approach. A lab-scale hollow fiber membrane module was prepared for the model validation and evaluation. The comparison of model predictions with experimental results shows that the deviations of product purity are reduced from 10% to less than 1%, and the deviations of the permeate and residue flow rates are significantly reduced from 40% to 4%, indicating the reliability of the model. The proposed method provides an efficient tool for process engineering to simulate the membrane recovery process.

关键词: membrane vapor separation     membrane process modeling     process engineering     free volume theory     volatile organic compound    

Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

SUI Pengzhe, WEN Xianghua, HUANG Xia

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 362-367 doi: 10.1007/s11783-007-0062-9

摘要: In this study, ultrasound was used to control the membrane fouling online in an anaerobic membrane bioreactor (AMBR). Short-term running experiments were carried out under different operating conditions to explore feasible ultrasonic parameters. The experimental results indicated that when the crossflow velocity was more than 1.0 m/s, membrane fouling could be controlled effectively only by hydrodynamic methods without ultrasound. When ultrasound was applied, an ultrasonic power range of 60–150 W was suitable for the membrane fouling control in the experimental system. The experimental results showed that the membrane fouling was controlled so well that membrane filtration resistance (Σ) could stay at 5 × 10 m for more than a week with the crossflow velocity of 0.75 m/s, which equaled the effect of crossflow velocity of more than 1.0 m/s without ultrasound.

关键词: membrane filtration     filtration resistance     different     feasible ultrasonic     anaerobic membrane    

Novel membrane separation technologies and membrane processes

Yanying Wei, Gongping Liu, Jianquan Luo, Libo Li, Zhi Xu

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 717-719 doi: 10.1007/s11705-021-2053-y

A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1729-6

摘要:

● Fundamentals of membrane fouling are comprehensively reviewed.

关键词: Membrane fouling     Thermodynamic mechanism     XDLVO theory     Flory-Huggins theory     Fouling migration    

A review on membrane distillation in process engineering: design and exergy equations, materials and

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 592-613 doi: 10.1007/s11705-021-2105-3

摘要: One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

关键词: membrane distillation     recent developments     heat and mass transfer     wetting     membrane material    

Pilot plants of membrane technology in industry: Challenges and key learnings

Colin A. Scholes

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 305-316 doi: 10.1007/s11705-019-1860-x

摘要: Membrane technology holds great potential in gas separation applications, especially carbon dioxide capture from industrial processes. To achieve this potential, the outputs from global research endeavours into membrane technologies must be trialled in industrial processes, which requires membrane-based pilot plants. These pilot plants are critical to the commercialization of membrane technology, be it as gas separation membranes or membrane gas-solvent contactors, as failure at the pilot plant level may delay the development of the technology for decades. Here, the author reports on his experience of operating membrane-based pilot plants for gas separation and contactor configurations as part of three industrial carbon capture initiatives: the Mulgrave project, H3 project and Vales Point project. Specifically, the challenges of developing and operating membrane pilot plants are presented, as well as the key learnings on how to successfully manage membrane pilot plants to achieve desired performance outcomes. The purpose is to assist membrane technologists in the carbon capture field to achieve successful outcomes for their technology innovations.

关键词: membrane gas separation     membrane contactors     carbon capture     pilot plants     key learnings    

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 634-660 doi: 10.1007/s11705-021-2107-1

摘要: Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.

关键词: membrane technology     membrane bioreactor     hospital wastewater     hybrid MBR     integrated MBR-membrane system    

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1606-1615 doi: 10.1007/s11705-022-2200-0

摘要: The increasing applications of seawater desalination technology have led to the wide usage of polyamide reverse osmosis membranes, resulting in a large number of wasted reverse osmosis membranes. In this work, the base nonwoven layer of the wasted reverse osmosis membrane was successfully modified into the hydrophobic membrane via surface deposition strategy including TiO2 and 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS), respectively. Various techniques were applied to characterize the obtained membranes, which were then used to separate the oil–water system. The optimally modified membrane displayed good hydrophobicity with a contact angle of 135.2° ± 0.3°, and its oil–water separation performance was as high as 97.8%. After 20 recycle tests, the oil–water separation performance remained more than 96%, which was attributed to the film adhesion of the anchored TiO2 and PFOTS layer on the surface. This work might provide a new avenue for recycling the wasted reverse osmosis membrane used in oily wastewater purification.

关键词: oil–water separation     wasted reverse osmosis membrane     hydrophobic modification    

Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobicceramic membrane bioreactor

Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1131-6

摘要:

The existence of three-phase separator did not affect COD removal in the EAnCMBR.

The existence of three-phase separator aggravated methane leakage of EAnCMBR.

The existence of three-phase separator aggravated membrane fouling rate of EAnCMBR.

Start-up of EAnCMBR equipped three-phase separator was slightly delayed.

关键词: Anaerobic membrane bioreactor     Three-phase separator     Membrane fouling     Methane leakage     Sludge property    

Recent advances in membrane bioreactor technology for wastewater treatment in China

Xia HUANG, Kang XIAO, Yuexiao SHEN

《环境科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 245-271 doi: 10.1007/s11783-010-0240-z

摘要: Since the introduction of the membrane bioreactor (MBR) in China in the early 1990s, remarkable progress has been achieved on the research and application of this technology. China has now become one of the most active fields in the world in this regard. This review outlines the development of MBR-based processes in China and their performance of treating municipal and industrial wastewaters. Since membrane fouling is a critical operational problem with MBR processes, this paper also proposes updated understanding of fouling mechanisms and strategies of fouling control, which are mainly compiled from publications of Chinese researchers. As for the commercial application of MBR in the country, the latest statistics of large-scale MBR plants (>10000 m·d) are provided, and the growth trend of total treatment capacity as well as its driving force is analyzed.

关键词: membrane bioreactor (MBR)     municipal wastewater treatment     industrial wastewater treatment     membrane fouling     commercial application     China    

Ceramic membrane fouling mechanisms and control for water treatment

《环境科学与工程前沿(英文)》 2023年 第17卷 第10期 doi: 10.1007/s11783-023-1726-9

摘要:

● The fouling is summarized based on ceramic membrane performance and pollutants.

关键词: Ceramic membrane     Fouling model     Fouling control    

Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1531-x

摘要:

• Ceramic membrane filtration showed high performance for surface water treatment.

关键词: Ceramic membrane     Coagulation     Polytitanium chloride     Membrane fouling    

标题 作者 时间 类型 操作

Effects of a dynamic membrane formed with polyethylene glycol on the ultrafiltration of natural organic

Boksoon KWON, Noeon PARK, Jaeweon CHO,

期刊论文

Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters

Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian

期刊论文

Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment

Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue

期刊论文

Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation

Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He

期刊论文

Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

SUI Pengzhe, WEN Xianghua, HUANG Xia

期刊论文

Novel membrane separation technologies and membrane processes

Yanying Wei, Gongping Liu, Jianquan Luo, Libo Li, Zhi Xu

期刊论文

A critical review on thermodynamic mechanisms of membrane fouling in membrane-based water treatment process

期刊论文

A review on membrane distillation in process engineering: design and exergy equations, materials and

期刊论文

Pilot plants of membrane technology in industry: Challenges and key learnings

Colin A. Scholes

期刊论文

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

期刊论文

Highly hydrophobic oil−water separation membrane: reutilization of waste reverse osmosis membrane

期刊论文

Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobicceramic membrane bioreactor

Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang

期刊论文

Recent advances in membrane bioreactor technology for wastewater treatment in China

Xia HUANG, Kang XIAO, Yuexiao SHEN

期刊论文

Ceramic membrane fouling mechanisms and control for water treatment

期刊论文

Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane

期刊论文